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Abstract
Human brain functional networks are topologically organized with nontrivial connectivity characteristics such as small-
worldness and densely linked hubs to support highly segregated and integrated information processing. However, how they
emerge and change at very early developmental phases remains poorly understood. Here, we used resting-state functional MRI
and voxel-based graph theory analysis to systematically investigate the topological organization of whole-brain networks in 40
infants aged around 31 to 42 postmenstrual weeks. The functional connectivity strength and heterogeneity increased
significantly in primary motor, somatosensory, visual, and auditory regions, but much less in high-order default-mode and
executive-control regions. Thehuband rich-club structures in primary regionswere alreadypresent at around 31postmenstrual
weeks and exhibited remarkable expansions with age, accompanied by increased local clustering and shortest path length,
indicating a transition from a relatively random to a more organized configuration. Moreover, multivariate pattern analysis
using support vector regression revealed that individual brain maturity of preterm babies could be predicted by the network
connectivity patterns. Collectively, we highlighted a gradually enhanced functional network segregation manner in the third
trimester, which is primarily driven by the rapid increases of functional connectivity of the primary regions, providing crucial
insights into the topological development patterns prior to birth.
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Introduction
The topological principles of human brain networks have recent-
ly been extensively studied with noninvasive neuroimaging
methods. The spontaneous low-frequency fluctuations in brain

activities, monitored by blood oxygen level-dependent (BOLD)
signals using resting-state functional magnetic resonance
imaging (R-fMRI), have been found temporally correlated
across functionally related areas (Friston 1994; Biswal et al.
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1995). These correlations, referred to as functional connectivity,
yield detailed maps of coordination across brain regions, com-
prising the “functional connectome” of individuals (Sporns
et al. 2005; Biswal et al. 2010; Kelly et al. 2012). Employing the
graph theory-based analysis method, several nontrivial topo-
logical properties have been discovered in the functional connec-
tomes of healthy adults: small-worldness, which reflects an
optimal balance between segregation and integration in informa-
tion processing between regions (Salvador et al. 2005; Achard
et al. 2006); the presence of a small number of hubs in themedial
and lateral frontal and parietal cortices with disproportionately
numerous connections (Buckner et al. 2009; Tomasi and Volkow
2011; Liang et al. 2013; van den Heuvel and Sporns 2013), which
tend to be densely connected to each other, forming a “rich
club” (van den Heuvel and Sporns 2011; van den Heuvel et al.
2012; Cao et al. 2014). Intriguingly, these key aspects of the func-
tional connectome have been revealed to change significantly
across development (Bullmore and Sporns 2009, 2012; Di Martino
et al. 2014), raising the question of how they emerge and change
at very early stages of human life.

In the brains of term babies, previous R-fMRI studies employ-
ing seed-based connectivity or independent component analyses
have identified specific functional networks, including primary
visual, auditory, and sensorimotor networks (Fransson et al.
2007, 2009; Doria et al. 2010; Smyser et al. 2010), and default-
mode and executive-control networks involved in heteromodal
functions (Doria et al. 2010; Smyser et al. 2010). Network analyses
based on graph theory further revealed that the functional con-
nectomes of infant brains already exhibited the small-world
structure. Distinct from the adults, however, the hubswere large-
ly confined to primary sensorimotor regions at term (Fransson
et al. 2011; Gao et al. 2011). Studying brains even younger than
full-term birth is crucial to understand how these topological
properties appeared.

Prior to the normal time of birth, rapid neuronal growth oc-
curs during the third trimester of pregnancy. Neurons migrating
from ventricular and subventricular zone along the radial glial
scaffold (Rakic 1972, 1995; Sidman and Rakic 1973) interact with
each other aswell as neurons in the cortical plate through synap-
tic formation, dendritic arborization, and axonal growth (Molliver
et al. 1973; Kostovic and Jovanov-Milosevic 2006; Bystron et al.
2008). The interconnected neurons are thought to have resulted
in the formation and differentiation of significant functional cir-
cuits, fostering emergence of primary sensorimotor functions
and higher cognitive skills (Dehaene-Lambertz and Spelke
2015). Using R-fMRI data obtained from fetuses or premature in-
fants, developmental curves of various specific functional con-
nections have been depicted (Doria et al. 2010; Smyser et al.
2010; Jakab et al. 2014; Thomason et al. 2015; Toulmin et al.
2015; Ball et al. 2016). However, it remains largely unknown
about the emergence and maturation process of the large-scale
topological properties of the functional connectomes, such as
the functional segregation and integration patterns, at this critic-
al developmental stage.

Here, we employed R-fMRI and voxel-based graph theory ana-
lysis approaches to investigate topological properties of whole-
brain functional networks in 40 term and preterm infants post-
menstrual aged 31.3–41.7 weeks at the scan time. We first as-
sessed the spatiotemporal dynamics of functional connectivity
by measuring correlation of spontaneous BOLD signals among
every pair of brain voxels in the whole brain and examining
these changes along anatomical distances for each infant. Subse-
quently, we explored the emergence and age-dependent changes
of the topological properties of functional brain connectome,

including small-worldness, modular structure, hubs, and rich
clubs. We hypothesized that 1) this period is marked by a gradual
transition from a relatively random to amore organized network,
characterized by increased functional connectivity and local net-
work clustering, and 2) such topological changes are primarily
driven by the disproportionate growth of the primary functional
systems in preparation for the basic survival functions at birth.

Materials and Methods
Participants

We recruited 52 normal preterm and term infants with post-
menstrual age from 31.3 to 41.7 weeks at the scan time. Here,
postmenstrual age was defined according to Engle’s descriptions
(Engle 2004). The infants were part of the normal cohort for par-
ticipating the research of studying normal brain maturation in
this key neural developmental period and were not clinically
indicated. The detailed demographic information is presented
in Table 1. Briefly, all the infants were recruited from Parkland
Hospital at Dallas and underwent an R-fMRI scan. These infants
were selected through rigorous screening procedures by a board-
certified neonatologist (L.C.). The exclusion criteria include the
mother’s excessive drug or alcohol abuse during pregnancy;
Grade III–IV intraventricular hemorrhage; periventricular le-
ukomalacia; hypoxic–ischemic encephalopathy; body or heart
malformations; chromosomal abnormalities, lung disease or
bronchopulmonary dysplasia; necrotizing enterocolitis requiring
intestinal resection or complex feeding/nutritional disorders;
defects or anomalies of the forebrain, brainstem or cerebellum;
brain tissue dysplasia or hypoplasia; abnormalmeninges; altera-
tions in the pial or ventricular surface; or white matter lesions.
A pediatric radiologist (N.R.) with 25 years of experience con-
firmed no structural or signal abnormality with a dulcet image
pattern appropriate for postmenstrual age after reading the MRI
scans. Written and informed consent was obtained from the par-
ents. This study was approved through the Institutional Review
Board. After discarding the subjects with head motions exceed-
ing thresholds (see “Image Preprocessing”), the R-MRI data of 40
normal preterm and term infantswere used for the data analysis.

Data Acquisition

The MRI data were acquired at a Philips 3T Achieva MR scanner
with 8-channel SENSE head coil at the Children’s Medical Center
at Dallas. The infants were well-fed prior to scanning. All MR
scans were performed during natural sleep without sedation.
A T2-weighted gradient-echo EPI sequence was used to obtain
the R-fMRI scan. A total of 210 whole brain EPI volumes were ac-
quired using the following parameters: TR = 1500 ms, TE = 27 ms,
flip angle = 80°, in-plane imaging resolution = 2.4 × 2.4 mm2, in-
plane field of view (FOV) = 168 × 168 mm2, slice thickness = 3 mm,
withnogap; slice number = 30. TheR-fMRI scan timewas5.4 min.A
co-registered T2-weighted imagewas acquiredwith turbo spin echo
(TSE) sequenceasthe structuralMRIwith the followingparameters:
TR = 3000 ms, effective TE = 80ms, in-plane imaging resolution =
1.5 × 1.5 mm2, in-plane field of view (FOV) = 168 × 168 mm2, slice
thickness = 1.6 mm with no gap, slice number = 65. The acquired
T2-weighted image was zero-filled to 256 × 256 image matrix.

Data Analysis

Image Preprocessing
The BOLD fMRI images were preprocessed using Statistical Para-
metric Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm) and
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Data Processing Assistant for Resting-State fMRI [DPARSF, (Yan
and Zang 2010)]. Before the preprocessing, we removed the first
15 volumes for signal to reach a steady state, leaving 195 func-
tional volumes for each subject. These functional data were
then corrected for acquisition time delay between slices and
head motion between volumes. The data of 12 subjects were dis-
carded from further analysis, due to their head motion displace-
ments >5 mm, rotation >5°, or mean frame-wise displacement
(mFD) >1 mm (Power et al. 2012). Within the remaining 40
subjects, the head motion parameters showed no significant
correlation with age (mFD: r = 0.03, P = 0.831). The head motion
corrected functional data were subject to the following imaging
process. Briefly, these functional data were first aligned with
their corresponding high-resolution T2-weighted structural
images using a linear transformation. Then, the individual
T2-weighted images were nonlinearly registered to a 37-week
brain template (Serag et al. 2012). A customized templatewas gen-
erated through averaging the resultant normalized T2-weighted
structural images of all subjects. Individual T2-weighted images
were further nonlinearly registered to the custom template. The
aligned functional data were normalized by applying the trans-
formation parameters estimated during the second registration
of T2-weighted images and resampled to 3 mm isotropic voxels.
The template of the cortex, deep gray matter, white matter, and
cerebrospinal fluid tissue templates at 37 weeks were also regis-
tered to the customized template for following mask generation
(Serag et al. 2012). The normalized functional images further
underwent spatially smoothing with a Gaussian kernel (full
width at half-maximum of 4 mm), linear trend removal, and tem-
poral band-pass filtering (0.01–0.10 Hz). Finally, several nuisance
variables, including Friston’s 24 head motion parameters (Friston
et al. 1996), the averaged signal from white matter and cerebro-
spinal fluid tissue, were removed through multiple linear regres-
sion analysis to reduce the effects of nonneuronal signals.

Functional Correlation Matrix Formation
In this study, we constructed the functional correlation matrices
at a voxel level. A graymattermask (number of voxels = 7101) was
predefined through thresholding the combing cortex and deep
graymatter probability templates. Pearson’s correlation between
the BOLD time series of each pair of voxels within the graymatter
mask was calculated. Fisher’s r-to-z transformation was applied
to improve the normality of the correlation coefficients, and the

absolute values of all correlations were used to obtain the correl-
ation matrix for each subject. Notably, connectivity terminating
within 10 mm of each source voxel center was set to zero to
avoid potential shared signals between nearby voxels.

Functional Connectivity Analysis
To explore age effects on functional connectivity, we calculated
the voxel-wise functional connectivity strength (FCS) values.
Specifically, for each voxel, the FCS was calculated as the average
of the correlations between this voxel and all other voxels in the
brain. The mean strength and the heterogeneity of FCS were
calculated for global description. Here, FCS heterogeneitywas de-
fined asH ¼ Δ=〈FCS〉, where Δ ¼ P

i

P
j jFCSi � FCSjj=ðn × ðn� 1ÞÞ is

the average absolute FCS differences of all pairs of nodes (i and j),
and n is the number of nodes (n = 7101). To examine the develop-
mental effects on nodal FCS, a general linear model (GLM) ana-
lysis was then performed in a voxel-wise manner. Multiple
comparisons were performed using Monte Carlo simulations
(For details, see the following “Statistical Analysis” section).

To further explore the distance effects on age-related con-
nectivity changes, FCS was calculated at different distance bins.
Specifically, we calculated the Euclidean distance, Dij, as an
approximate anatomical distance of functional connectivity be-
tween voxel i and voxel j and then dividedwhole brain functional
connectivity maps into 5 bins with Euclidean distances binned
into 20 mmsteps, ranging from10 to 110 mm (i.e., the longest dis-
tance between voxels in the gray matter mask). For every voxel,
the FCS at each bin was calculated. Voxel-wise GLM analysis
was conducted again to explore the age effects on distance-
dependent FCS. Notably, considering the FCS maps in different
distance bins contained different numbers of gray matter voxels,
we performed the multiple comparison corrections within the
respective masks (size range: 41 148–191 727 mm3).

Besides, a complimentary seed-based functional connectivity
analysis was also conducted to explore detailed information of
the connectional changes. We defined 6 seed regions of interest
(ROIs) as 5 mm radius spheres centered on the maximal peak
voxels of regional clusters showing significant age-related
changes on FCS. The ROIs included the right thalamus, left lin-
gual gyrus, left precentral gyrus, posterior cingulate/precuneus
cortex (PCC/PCu), and bilateral rolandic operculum. For each
seed ROI, we performed individual functional connectivity ana-
lysis by correlating the mean time series of the seed ROI with

Table 1 Demographic information for the preterm and term infants

Number
of infants

Age
range
(weeks)

Age
mean
(weeks)

Weight
range
(kg)

Weight
mean
(kg)

Male,
n (%)

White,
n (%)

Mode of
deliverya

Feeding
practiceb

Antibiotic exposure
during pregnancy

Infants scanned during R-fMRI
At birth 52 25.1–41.0 33.4 0.8–4.0 2.2 37 (71) 38 (73) C: 30;

V: 22
B: 52; F: 0 Yes

At scan 52 31.3–41.7 36.4 1.4–4.1 2.5 37 (71) 38 (73) C: 30;
V: 22

B: 52; F: 0 Yes

Infants with acceptable h/m during R-fMRI
At birth 40 25.1–40.7 33.2 0.8–4.0 2.1 29 (73) 30 (75) C: 24;

V:16
B: 40; F: 0 Yes

At scan 40 31.3–41.7 37.0 1.4–4.1 2.6 29 (73) 30 (75) C: 24;
V: 16

B: 40; F: 0 Yes

Note: The acceptable head motion (h/m) includes translation <5 mm, rotation <5°, and mFD <1 mm.
aC for C-section and V for vaginal birth.
bB for breast-feeding and F for formula.
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those of all voxels within the gray matter mask. A Fisher’s r-to-z
transformation was further applied to improve the normality of
the resulting correlation coefficient. We divided all the subjects
into 3 groups according to their ages (Group 1: 31.3–35.3 weeks
[n = 14]; Group 2: 35.6–38.4 weeks [n = 12]; and Group 3: 38.7–41.7
weeks [n = 14]). The seed-based functional connectivity patterns
of each group were calculated using the 1-sample T-test. The
term individuals were selected as the controls, and correlation
patterns of them were also examined. Then we calculated the
age-related changes on the functional connectivity with voxel-
wise GLM analysis.

Functional Network Analysis
Functional brain networks were constructed by thresholding
the correlation matrices with a density of 5%. The main network
analyses were based on binarized brain networks. The effects of
other connectivity densities and weighted network analysis on
our results were also evaluated (see the following “Validation
Analysis”). Notably, these voxel-wise brain network analyses
were performed using our CPU–GUI platform (Wang et al. 2013).
The following characteristic graph metrics were estimated to de-
scribe the topological organization development of the neonatal
functional connectome.

Specifically, 1) to explore the age effects on global topological
properties of whole brain functional networks, we computed
small-world measures, including the clustering coefficient (Cp),
the characteristic path length (Lp), their normalized versions
(Gamma and Lamda, respectively), and the small-worldness
(Sigma) (Watts and Strogatz 1998; Humphries et al. 2005). Notably,
a network is said to be “small-world” when Sigma >1, which has
both high global and local information transformation capacity
(Watts and Strogatz 1998; Latora and Marchiori 2001; Humphries
et al. 2005; Achard et al. 2006). Here, we used 100 corresponding
random networks that were simultaneously matched in the
distribution of correlation values and the connection density
(5%) for each individual’s practical network. This kind of random
networks was considered the appropriate null models for
correlation-based networks (Zalesky et al. 2012). 2) Furthermore,
we explored the modular structure (i.e., sets of nodes that are
highly interconnected but with relatively fewer connections to
the others in differentmodules) in the brain networks and exam-
ined the changes in both modularity (Q) and modular number
with age (Newman 2006). Louvain algorithm, which is a fast
and accurate community detection algorithm for large networks
(Blondel et al. 2008), was applied to individual brain network for
modular analysis. 3) To explore age-related changes in nodal
properties, we used nodal degree centrality, which indicates
the number of connections linking a node with all other
nodes. Nodes with high degree (>mean + 1.5 SD) were identified
as functional hubs, representing that they exhibit high connect-
ivity to the rest of the brain. We further examined the node
degree distribution for each subject. Moreover, nodal topologic-
al properties, including nodal efficiency, nodal clustering co-
efficient, and participation coefficient, were also computed
(Watts and Strogatz 1998; Latora and Marchiori 2001; Newman
2006; Achard and Bullmore 2007). 4) Finally, to explore the
core architectural changes, we identified the rich-club structure
of brain functional networks, which is formed by the densely
interconnected hubs (van den Heuvel and Sporns 2011;
van den Heuvel et al. 2012; Cao et al. 2014), and further exam-
ined the changes in this structure over the age range. Detailed
analyses of network properties are described in Supplementary
Materials and Methods.

Statistical Analysis
To detect developmental changes in both nodal and global prop-
erties, we used the following GLM, which included gender and
mFD as covariates.

Y ¼ β0 þ β1 × ageþ β2 × genderþ β3 ×mFD

Without other statements, the voxel-wise analyses were cor-
rected for multiple comparisons and set to a corrected P < 0.05
(which corresponded to an uncorrected single voxel sig-
nificance level of P < 0.05 and a minimum cluster size of
918 mm3). This correction was confinedwithin the graymatter
mask (size: 191 727 mm3) and performed with Monte Carlo
simulations (Ledberg et al. 1998) using the AFNI AlphaSim pro-
gram (http://afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.
pdf).

Support Vector Regression Prediction Analysis
To determine whether the functional connectomic measure-
ments could serve as biomarker for the brainmaturity prediction,
we performedmultivariate pattern analysis using support vector
regression approach. Chronological age was used as the training
measure. Nodal FCS andwhole-brain networkmetrics (including
Cp, Lp, Sigma, Q, rich-club coefficient, and rich club size) were
used as features for the support vector regression predictor. We
performed the prediction using a linear kernel function and the
default settings of C51with epsilon 50.001 in the LIBSVM Toolbox
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) (Dosenbach et al.
2010). Leave-one-out cross-validation was used to evaluate the
performance of support vector regression model. During each
leave-one-out cross-validation iteration, we used the decision
function derived from the training subjects to predict the brain
age of the test subject. Pearson correlation coefficient between
the actual and predicted ageswas calculated to assess the predic-
tion accuracy. The statistical significance of this prediction was
assessed by permutation test. Specifically, for each prediction
model, the age labels were randomly permuting 10 000 times.
In each time, we calculated the Pearson correlation coefficient
and used the empirical distribution to determinewhether the ob-
served correlation values could occur by change with 1-tailed
test.

Procedures for Reducing Head Motion Artifact
Tomoderate the effects of headmotion on estimates of function-
al connectivity and network metrics, we regressed out Friston’s
24 head motion parameters in the preprocessing steps and
added mFD as a covariance in the statistical model in the main
text (Yan et al. 2013). This method has been found to perform
well in removing motion artifacts (Yan et al. 2013). Besides, we
also conducted the scrubbing method in a separate analysis to
validate our major findings through censoring volumes within
each subject’s fMRI time series that were associated with sudden
headmotion (Power et al. 2012). For each subject, an fMRI volume
was censored when its FD was above 1 mm. One volume before
and 2 volumes after the bad volume were also discarded. One
subject was further excluded because less than half of the
volumes were remained according to the above criteria. A
total of 39 subjects all have more than 112 volumes (∼3 min,
112–195 volumes, mean ± SD: 179.2 ± 20.0) of BOLD data re-
mained after motion censoring. We recalculated the age effects
on the FCS and network topological properties using censored
time courses.
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Validation Analysis
To evaluate the reproducibility of our results, we examined the
influences of different image preprocessing and network ana-
lysis strategies (e.g., global signal removal, different connectivity
density thresholds, and weighted network analysis). Briefly, 1)
given that global signal of the whole brain is an important con-
founding factor for brain network analyses based on R-fMRI
(Fox et al. 2009; Murphy et al. 2009; Weissenbacher et al. 2009),
we thus explored the influences of global signal regression on
themajorfindings; 2) given that the connectivity densitymay im-
pact the network topological structure, we also examined the
findings under other network densities (3 and 7%); 3) given that
the weights of connections may provide additional information,
we validated the influence of weighted network analysis on our
findings. Specifically, the weights of connections survived after
thresholding with a density of 5% were applied, and the weighted
networksweredivided by themeanof the total connectionweights.
The resultant networks were used for further computation.

Results
Development of Functional Connectivity

With themeasurements of FCS from 31.3 to 41.7 weeks, we found
that both the mean and the heterogeneity of the FCS across the
entire brain increased significantlywith age (t = 3.70, P < 0.001, ad-
justed R2= 0.28; t = 3.20, P = 0.003, adjusted R2= 0.22, respectively;
Fig. 1A). Brain regions with the most significant age-dependent
increases in FCS were mainly distributed in the primary sensori-
motor, visual, auditory, and language (Wernicke’s area, Broca’s
area, and rolandic operculum) cortex, as well as subcortical re-
gions (caudate, thalamus, and putamen) (corrected P < 0.05;
Fig. 1B). We also found increased FCS in a few brain regions in-
volved in default-mode (e.g., ventral medial prefrontal, posterior
cingulate, and precuneus) and executive-control (e.g., dorsal
anterior cingulate cortex, left lateral prefrontal cortex, and left

inferior parietal lobe) networks (corrected P < 0.05; Fig. 1B). The
spatial patterns of FCS distribution during development from
31 to 41 weeks are illustrated in Figure 1C and Supplementary
Movie 1. The mean FCS pattern of infants scanned at term-
equivalent agewas also shown as a reference (Fig. 1C). To further
understand the spatial range of the connectivity that significant-
ly increases during the developmental period from 31.3 to 41.7
weeks, we computed age-related FCS alterations across different
distance bins. The age-related FCS increaseswere found primar-
ily contributed by the short-to-middle distance connections
(10–70 mm, P < 0.05, corrected, Fig. 1D). The brain regions with
significant FCS increase in short-to-middle connections (Fig. 1D)
were spatially similar to those of all-range FCS increases (Fig. 1B).
Significant long-distance (70–110 mm) FCS increases were ob-
served in only a few brain regions (Fig. 1D).

Figure 2 shows whole-brain functional connectivity maps
with the regions characterized by significantly age-dependent
changes as seeds. During development, the thalamus showed in-
creased positive connectivity with sensorimotor and visual re-
gions and increased negative connectivity with PCC/PCu
(Fig. 2A). Notably, the significant negative correlation between
thalamus and PCC/PCu did not appear until about 38 weeks.
The left lingual gyrus showed significantly increased positive
connectivity with other regions in visual system and with audi-
tory, language, and sensorimotor regions as well as medial pre-
frontal cortex (mPFC) (Fig. 2B). Precentral gyrus, a region in the
primary sensorimotor system, showed significantly increased
positive correlation with contralateral sensorimotor regions
and with regions in visual auditory and language systems
(Fig. 2C). We found that the regions with significant correlations
with PCC/PCu became more focal and the strength of connectiv-
ity of these regions to sensorimotor regions decreased with age
(Fig. 2D). Additionally, we noticed that the PCC/PCu showed a
trend toward age-related increase in functional connections
with mPFC (where this increase reached the height threshold
but did not survive extent threshold after multiple comparison

Figure 1.Age-dependent changes in FCS from31.3 to 41.7weeks. (A) Themean FCS and the heterogeneityof FCS increasedwith age. The line plots show the regression line

with 95% prediction error bounds. (B) Age effects on nodal FCS. (C) Developing nodal FCS from 31 to 41weeks demonstrating age-dependent gradual increase of nodal FCS.

A map of FCS averaged from 10 term infants (>38.7 weeks at birth) was also presented as a reference. Nodal FCS was calculated as the fitted values of the general linear

model with gender and head motion parameters mFD as covariates. (D) Age effects on nodal FCS differentiated within different distance bins. The values were mapped

onto the cortical surface using BrainNet Viewer (Xia et al. 2013). The R2 values were adjusted using gender and mFD as covariates. PMA (weeks), postmenstrual age in

weeks; FCS, functional connectivity strength; Het, heterogeneity.
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Figure 2. Developmental changes of seed-based functional connectivity. (A) Right thalamus; (B) left lingual gyrus; (C) left precentral gyrus; (D) PCC/PCu; (E) Right rolandic

operculum; (F) left rolandic operculum. For each seedROI, thefirst row showed the regionswith significant age effects on seed-based functional connectivity in axial slices.

The 4 rows below showed the regions with significant functional connectivity with the seed regions within 3 different age groups of infants and within a group of term

controls (>38.7 weeks at birth, n = 10) at a relatively strict threshold of a corrected P < 0.01 (which corresponded to an uncorrected single voxel significance level of P < 0.01

and a minimum cluster size of 351 mm3). Representative axial slices for spatial patterns of connectivity are overlaid onto the customized template. PCC/PCu, posterior

cingulate/precuneus cortex; MPFC, medial prefrontal cortex; ROI, region of interest.
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correction) (Fig. 2D). Bilateral rolandic operculum showed age-
related positive correlations with language, sensorimotor, and
visual regions (Fig. 2E,F). However, the left rolandic operculum
showed stronger positive correlations with the contralateral
and sensorimotor regions, possibly indicating that the lateraliza-
tion was taking place during the third trimester (Fig. 2F).

Development of Network Topology: Global Properties,
Hubs and Rich-Club Structure

Small-World and Modular Structure
We found that the Cp, Lp, and Lamda all increased significantly
with postmenstrual age (t = 2.89, P = 0.006, adjusted R2= 0.19 for
Cp; t = 2.99, P = 0.005, adjusted R2= 0.20 for Lp; t = 2.90, P = 0.006, ad-
justed R2= 0.19 for Lamda, respectively; Fig. 3A–C). These results
suggest enhanced segregation in brain networkorganization dur-
ing this early developmental period. No significant age-related
changes in the Gamma or Sigmawere detected (Ps > 0.05). Notably,
the functional brain networks of all preterm and term babies
showed small-world organization, indicating the appearance of
small-world properties as early as 31.3weeks and the persistence
of an efficient organization for information transformation from
31.3 to 41.7 weeks (Sigma: 1.17–1.67, mean/SD: 1.45/0.12). On the
basis of modularity analysis, we observed that the infant brains
exhibited significant modular structures but did not display
age-related changes in either modularity values or community
number (Q: 0.23–0.43, mean/SD: 0.34/0.05; number of modules:
3–7, mean/SD: 5.15/0.86, both Ps > 0.05). Notably, both the mean
participation coefficients and the number of connectors de-
creased with age. These findings suggested that while the
modular structure were maintained, the increased specificity
of modular systems was taking place (t = −2.60, P = 0.014, ad-
justed R2= 0.16; t = −2.07, P = 0.046, adjusted R2= 0.11, respect-
ively; Fig. 3D,E).

Nodal Centrality
During this developmental stage, significant age-related in-
creases in the nodal degree values were primarily distributed in

the precentral and postcentral gyri and supplementary motor
area, while the decreases were in the posterior cingulate and pre-
cuneus cortex (Fig. 4A). Figure 4B illustrates the fitted degree
distribution maps of infant brains from 31 to 41 weeks and the
mean degree maps of infants scanned at term-equivalent age.
The heterogeneity of the nodal degree values increased with
age, indicating that the topological roles of nodes in information
communication become more diverse with age (t = 2.73, P = 0.01,
adjusted R2= 0.17; Fig. 4C). We further observed the number
of brain hubs increased with age (t = 3.19, P = 0.003, adjusted
R2= 0.22; Fig. 4D), consistent with which is that only a few regions
located in the supplementary motor area and visual cortex were
hubs at the very early preterm age (e.g., 31 weeks), whilemore re-
gions, including the precentral and postcentral gyri and rolandic
operculum, emerged as hubs at about 34weeks and continuously
extended and strengthened with development (Fig. 4B). The
degree distributions P(k) of the brain networks were best fitted
as exponentially truncated power law (Fig. 4E).With the lower ex-
ponential degree cut-off values increased significantly with age
(t = 2.36, P = 0.024, adjusted R2= 0.14; Fig. 4F), the transition from
the scaling regimen to the exponential fall-off occurred at a high-
er degree in older babies, reflecting relative increases in the num-
bers and connections of hubs in the brain networks with early
development.

With the measurement of 3 additional nodal centrality
parameters, we found that significant age-related increases
in the nodal clustering coefficient were primarily distributed
in the supplementary motor area, precentral gyrus, postcen-
tral gyrus, insula, thalamus, and visual cortex (P < 0.05, cor-
rected, Fig. 5A). In most of these regions, the participation
coefficient values decreased during development (P < 0.05,
corrected, Fig. 5B). The regions showing age-related decreases
in nodal efficiency included the insula, posterior cingulate,
precuneus, lateral prefrontal and parietal, dorsal anterior cin-
gulated, and lateral temporal cortexes (P < 0.05, corrected,
Fig. 5C). These findings provide further evidences for enhanced
segregation processing and decreased network integrity during
development.

Figure 3. Age-dependent changes of small-world andmodular properties from 31.3 to 41.7 weeks. The (A) Cp, (B) Lp, (C) Lamda increased with age. The (D) mean PC and (E)

number of connectors (nodeswith PC > 0.45) decreasedwith age. The scatter plots show the regression linewith 95% prediction error bounds. The R2 values were adjusted

using gender and mFD as covariates. PMA (weeks), postmenstrual age in weeks; Num, number.
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Rich-Club Structure
Weobserved that over the age range examined, the brain connec-
tomes exhibited rich-club structure characterized by normalized
Φ values significantly >1 (Fig. 6A). After selecting the illustrated
rich club as the one with the highest normalized Φ in each sub-
ject, we found that the size of the rich club increased with age
(t = 2.72, P = 0.010, adjusted R2= 0.17; Fig. 6B). However, the nor-
malized Φ decreased with age, likely reflecting the dramatic ex-
pansion of rich-club organization (t = −3.30, P = 0.002, adjusted
R2= 0.24; Fig. 6C). The spatial changing patterns of rich-club or-
ganizationwere similar to those of the hubs (Fig. 6D,B). According
to the categories of the associated nodes, all brain connections
could be classified into rich club, feeder, or local edges (van den
Heuvel and Sporns 2011; van den Heuvel et al. 2012) (Fig. 6E).
We observed that the rich club and feeder connections exhibited

age-related increases or increasing tendency in both number
and strength with age (for number: t = 2.99, P = 0.005, adjusted
R2= 0.20; t = 2.15, P = 0.039, adjusted R2=0.12, respectively; Fig. 6F;
for strength: t = 1.65, P = 0.109, adjusted R2= 0.07; t = 3.25, P = 0.002,
adjusted R2= 0.23, respectively; Fig. 6G). For the local connections,
we found that the numbers decreased with age, whereas the
connectivity strength increased with age (t = −2.79, P = 0.008,
adjusted R2= 0.18, Fig. 6F; t = 3.57, P = 0.001, adjusted R2= 0.27,
respectively, Fig. 6G).

Prediction of Brain Maturity Using Functional
Connectomic Measurements

Using the support vector regression and leave-one-out cross-
validation, we found that the nodal FCS was able to significantly

Figure 4. Developmental changes in nodal degree and degree distribution from 31.3 to 41.7 weeks. (A) Regions showing significant age-related changes in nodal degree.

(B) The fitted degreemap of eachweek of postmenstrual age. The hubs are delineatedwith blue lines. Themap of nodal degree values averaged from 10 term infants (>38.7

weeks at birth) is also presented as a reference. (C) The heterogeneity of nodal degree increased with age. (D) The number of hubs increased with age. The hubs included

regionswith nodal degrees > 1.5 SD beyond themean. (E) The cumulative distributions of degree for each subject. The blue circles indicate the original data. The solid lines

indicate the bestfitted distributions. Theyellow to red colors correspond to ages fromyounger to older. (F) The distribution parameters (kc) significantly increasedwith age.

For (C), (D), and (F), the R2 values were adjusted using gender and mFD as covariates; the dashed lines are the regression lines with 95% prediction error bounds. PMA

(weeks), postmenstrual age in weeks; Het, heterogeneity; Cul, cumulative. The values were mapped onto the cortical surface using BrainNet Viewer (Xia et al. 2013).

Figure 5. Statistical maps showing regions with significant developmental changes in the (A) nodal clustering coefficient, (B) participation coefficient, and (C) nodal

efficiency. The values were mapped onto the cortical surface using BrainNet Viewer (Xia et al. 2013).
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(r = 0.58, P < 0.001; Fig. 7A) predict the brain age, and that the re-
gions with high prediction power weremainly located at the pos-
terior cingulate, precuneus, medial prefrontal, visual cortex,
medial temporal, and sensorimotor regions (Fig. 7B). For whole-
brain networkmetrics, although therewere not any singlemeas-
urement showing prediction power (Ps > 0.05), the combined one
was able to predict the brain age (r = 0.15, P = 0.007).

Validation Results

Weevaluated the effects of headmotion and different processing
strategies on our main findings. For functional connectivity
strength analyses, we found that the previous conclusions
remained unchanged under both head motion scrubbing and

global signal removal (Fig. 8A,B). Notably, although the visual cor-
tex and executive-control regions exhibited nonsignificant re-
sults with global signal removal, these regions reached the
height threshold but did not survive thresholding after multiple
comparison correction. For the topological metrics of functional
connectome, we found our main results were remained under
head motion correction and different processing strategies.
1) Head motion scrubbing. We also observed significantly in-
creased Cp, Lp, and Lamda with development using the scrubbed
data (t = 3.57, P = 0.001, adjusted R2 = 0.27; t = 3.49, P = 0.001, ad-
justed R2 = 0.26; t = 3.46, P = 0.001, adjusted R2 = 0.26; respectively;
Fig. 9A). 2) Connectivity density (3 and 7%) analysis. Most of the
major findings (connectivity density = 5%) remained unchanged
including the increased Cp, Lp, and Lamda with development

Figure 6. Development of rich-club organization from 31.3 to 41.7 weeks. (A) Individual normalized rich-club curves (Φnorm) for each baby. (B) The size of rich club and (C)

the normalized rich-club coefficients significantly changedwith age. (D) Maps showing themembership probabilities of regions belonging to the rich-club organization at

eachweekof postmenstrual age. Rich-club probabilitymapof 10 term infants (>38.7weeks at birth) is also presented. (E) An illustration figure of the rich-club organization.

The age-related changes in (F) edge number and (G) edge strength of different types of connections (rich club, feeder, and local connections) are shown. The R2 valueswere

adjusted using gender andmFD as covariates; the dashed lines are the regression lines with 95% prediction error bounds. PMA (weeks), postmenstrual age in weeks. The

values were mapped onto the cortical surface using BrainNet Viewer (Xia et al. 2013).
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under 2 other densities (3 and 7%; Fig. 9B). Additionally, we also
found age-related decreases of Sigma under a density of 3%
(t =−2.09, P = 0.044, adjusted R2 = 0.11). 3) Weighted network ana-
lysis. We also observed similar findings including the increased
Cp, Lp, and Lamda with development (t = 3.54, P = 0.001, adjusted
R2 = 0.26; t = 2.93, P = 0.006, adjusted R2 = 0.20; t = 2.37, P = 0.024, ad-
justed R2 = 0.14; respectively) while other properties showed no
significant age effects (Fig. 9C).

Discussion
By systematically investigating the early development of human
brain functional connectome during the third trimester from 31.3
to 41.7 weeks, we found disproportional increases of functional
connectivity strength mainly distributed in the primary sen-
sorimotor, visual, and language regions and reflected largely by
enhancement of short-to-middle range connections. For the con-
nectomic architecture, while small-world, modular, and rich-
club structures were present at 31.3 weeks, local clustering and
the shortest path length increased gradually and rich-club struc-
ture expanded from 31.3 to 41.7 weeks, resulting in the architec-
tural transformation from a relatively random tomore organized
configuration. We also found that the functional connectomic
metrics could predict the individual brain maturity. Together,
these findings suggested gradual enhancement of functional
segregation in the brain networks in the third trimester, which

is primarily driven by the rapid growth of functional connectivity
and hubs of the primary regions.

Strength and Heterogeneity of Functional Connectivity
Increased with Age

Using seed-based (Smyser et al. 2010; Thomason et al. 2013, 2015;
Jakab et al. 2014) and independent component analysis (Doria
et al. 2010; Toulmin et al. 2015) methods, several previous
R-fMRI studies on both fetuses andpreterm infants have reported
the development of connectivity in regions involving primary
visual, sensorimotor, auditory, and subcortical networks and
higher order networks, such as default-mode network (DMN).
Whole brain voxel-wise analysis in this study is computationally
expensive, but could readily reveal the elaborate connectivity
changes during the early developmental period, which were
not well characterized previously. We found that these short-
to-middle range connections are major contributors to signifi-
cant functional connectivity increases in primary brain regions
during the early developmental period (Fig. 1). The dominant de-
velopment of primary regions prior to birth, supported by the
drastic increase of short-to-middle range connections among
them, could be helpful for basic survival functions by the time
of birth and might lead to the low variability of functional or-
ganization in these regions across adult subjects (Buckner and
Krienen 2013; Mueller et al. 2013). In contrast, the development

Figure 7. The prediction results of individual brain age based on nodal FCS. (A) The prediction results of nodal FCS. The scatter plots show the correlation line of actual

verses predicted agewith 95% confidential interval. Pearson correlation coefficient between the actual and predicted ageswas calculated to assess the prediction accuracy.

Ten thousand permutation tests were performed to determine the statistical significance. (B) Absolute predicting map of support vector regression analysis to predict

brain age using FCS. The values were mapped onto the cortical surface using BrainNet Viewer (Xia et al. 2013).

Figure 8.Developmental changes of nodal functional connectivity strength (FCS)with data after global signal removal andwith data after headmotion scrubbing. The FCS

values were mapped onto the cortical surface using BrainNet Viewer (Xia et al. 2013).
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of long-range connections, primarily involved in global
information integration, mostly occurs after birth (Fair et al.
2009; Supekar et al. 2009; Dosenbach et al. 2010; Gao et al. 2011).
The disproportionate increase of FCS in primary systems is also
associated with the significantly increased heterogeneity of re-
gional connectivity strength and increased degree heterogeneity
(Figs 1A and 4C), indicating increased complexity in both local
brain regions and global brain networks with development.
These findings are compatiblewith a previous report that prema-
turity in infants leads to a reduction in the complexity of R-fMRI
covariance structure (Smyser et al. 2016).

Seed-based connectivity analysis revealed detailed maps
of the regions (Fig. 2) where BOLD signals were positively or
negatively correlated to the regions with most significant age-

dependent FCS changes. We observed that both within- and be-
tween-system connectivity changed significantly with age for
sensorimotor, visual, and language systems. The DMN was
found to be more concentrated in PCC/PCu, whereas increased
anterior–posterior connections within DMN were also detected,
suggesting that the development of higher order functional
network was taking places during the third trimester. Besides cor-
ticocortical connectivity, we also found significant changes in tha-
lamocortical connectivity, which were reflected by increased
connections between thalamus and sensorimotor cortex and de-
creased connections between thalamus and heteromodal cortex,
consistent with previous findings about the early development of
thalamocortical connectivity (Toulmin et al. 2015; Ball et al. 2016).
Although both corticocortical and thalamocortical age-dependent

Figure 9. Age-dependent changes of Cp, Lp, and Lamda from 31.3 to 41.3 weeks with headmotion scrubbing and different processing strategies. (A) Data after headmotion

scrubbing. (B) Different densities (3 and 7%). (C) Weighted brain networks. The scatter plots show the regression linewith 95% prediction error bounds. The R2 values were

adjusted with gender and mFD as covariates. PMA (weeks), postmenstrual age in weeks.
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connectivity changes were detected, the results in this study
demonstrated that the widespread corticocortical connectivity
changes were dominant at this phase, and these changes could
be attributable to the drastically macrostructural (Dubois et al.
2008) andmicrostructural (Yu et al. 2015) development of cortical
plate during the third trimester.

Developed Functional Specialization with Increased
Segregation Process in Brain Networks

Another key finding in the present study was the increased func-
tional specificity in the preterm human brain from 31.3 to 41.7
weeks from a graph theory perspective. The small-worldness
was observed to exist across the studied age period, reflecting
the emergence of functional segregation and integration pattern.
Nonetheless, we found significantly increased clustering coeffi-
cient and characteristic shortest path length in the brain net-
works with age, suggesting a gradually enhanced functional
segregation of information processing (Fig. 3). Furthermore, we
observed decreases in the participation coefficients and number
of connectors with themodular analysis (Fig. 3). These results in-
dicated that the connections became more locally clustered,
underlying early differentiation of the functional networks. An-
other R-fMRI study (Wylie et al. 2014) using independent compo-
nent analysis suggested that functional segregation continues
after birth into childhood. The specialization process has also
been foundwith EEG (Vanhatalo and Kaila 2006). Notably, the de-
velopment of brain specialization showed a good correspond-
ence with behavioral development. For example, Werner’s
“orthogenetic principle” suggested that increased differentiation
and hierarchical organization of behavior occur during child de-
velopment (Werner 1957; Sameroff 2010). The interactive special-
ization framework (Johnson 2000) predicted that both networks
and regions within networks become more functionally specia-
lized or segregated as they mature.

Strengthened Hub and Rich-Club Structures

We demonstrated strengthened functional hubs in brain net-
works during early development. Even in the brain of very early
preterm babies, the hubs were found to appear at locations pri-
marily in the supplementary motor areas and few visual regions,
which are distinct to those of adults in the postero-medial cores
with extensions into the temporo-parietal junction and fronto-
medial cortices (Buckner et al. 2009; Zuo et al. 2012; Liang et al.
2013; van den Heuvel and Sporns 2013). The presence of hub
structure in such an early phase indicates that the brain func-
tional networks were already nonrandom with different regions
playing heterogeneous roles in information communication.
During early development, the number of brain hubs increased
significantly and hub regions were additionally found in primary
sensory, motor, and visual regions and Wernicke’s area (Fig. 4B),
converging with the previous findings in neonates born full term
(Fransson et al. 2011). The primary sensory regions exhibited the
highest degree of glucose metabolism in infant brains at term
(Chugani et al. 1987; Chugani 1998). Previous studies on adults
suggested that higher rates of cerebral blood flow and metabol-
ism activity occurred at the hubs (Liang et al. 2013; Tomasi
et al. 2014). Notably, similar to both the functional and structural
networks of adults (Achard et al. 2006; He et al. 2007; Gong et al.
2009), the degree distribution of all infants followed exponential-
ly truncated power law (Fig. 4E), suggesting that specific physical
rules were topologically obeyed even in preterm brains. Specific-
ally, these rules facilitated the existence of hubs and prevent the

appearance of nodes with extremely high centrality to maintain
high communication abilities and high attack resilience. Re-
markably, the rich-club organization, a phenomenon of densely
interconnected hubs, already appeared at 31.3 weeks and ex-
panded in size with age (Fig. 6). The locations of hubs and rich
clubs identified in the functional networks in this study were
slightly different from those in the structural connectomes in
preterm and term infants (Shi et al. 2012; Ball et al. 2014; Brown
et al. 2014; van den Heuvel et al. 2015; Huang et al. 2015). These
discrepancies probably indicate differences in maturation be-
tween functional and structural connectomes (van den Heuvel
and Sporns 2013). Finally, it is noteworthy that the preterm ef-
fects on the subsequent hub and rich-club distribution changes
during development cannot be addressed in this study without
longitudinal R-fMRI data of both preterm-born and term-born in-
fants (more preterm effects in the discussion below).

Limitations, Technical Considerations,
and Future Directions

Several further issues need to be considered. First, preterm birth
has been associated with adverse neurodevelopmental out-
comes (Woodward et al. 2006). Despite that, MRI examinations
of preterm infants have been predominantly used to understand
brain development during the third trimester. Accumulated
studies using R-fMRI indicated dramatic reconfiguration during
the last 10 weeks prior to normal time of birth (Fransson et al.
2007, 2009; Doria et al. 2010; Smyser et al. 2010). Exposure to the
extrauterine environment could be one of the factors underlying
the observed network reorganization, but these effects would be
relatively subtle comparedwith the dramatic developmental fac-
tor during the third trimester (Bourgeois et al. 1989; Kostovic
1990). Nevertheless, it is likely that the disruption of the network
could become apparent in years subsequent to premature birth.
Second, there are growing interests on the influence of gutmicro-
biota on brain development. The microbiome of the infants is
likely to be affected bymany factors such as themode of delivery
(vaginal vs. C-section), feeding practices (breast-feeding vs. for-
mula), and exposure to antibiotic during pregnancy via maternal
microbiota (Borre et al. 2014). Specifically, preterm-born infants
are at greater risk for marked dysbiosis of the gut microbiota. In
the future, it would be very interesting to explore how gut micro-
biota affects brain development in babies. Third, given that the
global signal removal is associated with the emergence of nega-
tive correlations, which are still difficult to interpret (Fox et al.
2009; Murphy et al. 2009; Weissenbacher et al. 2009), we did not
regress out the global signal in the data analysis for the main re-
sults. For validation, global signal removal was also conducted
and similar age-related increases in the FCS were detected in
all regions but the visual cortex (Fig. 8B). These results were con-
sistent with previous findings that global signal regression re-
duces the significant correlations in visual regions (Murphy
et al. 2009; Chai et al. 2012). Fourth, considering recent concerns
about the motion-induced spurious findings on functional con-
nectivity, we processed the R-fMRI data with Friston’s 24-param-
eter regression and used themFD parameter as a covariant in the
GLM to regress out head motion effects. Validation with scrub-
bing analysis showed that the major results were largely pre-
served (Figs 8A,9A) (Power et al. 2012). Fifth, previous studies
have reported the complex relationship between the structural
and functional networks in adult brains (Wang et al. 2015). How-
ever, this relationship during the very early developmental stage
remains elusive and needs further exploration. Finally, future
longitudinal studies, instead of cross-sectional studies, would
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better delineate these early developmental trajectories of human
brain connectomes in preterm development.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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